超高温热物理性能测量——欧盟Hi-TRACE项目简介

上海依阳热分析
关注

Hi-TRACE联合体于2019年4月在贝尔格莱德(塞尔维亚)VINCA举行会议,讨论项目进展,并为下一个工作周期制定详细的工作计划。此外,还组织了咨询委员会2019年12月的下一次会议。仍然欢迎感兴趣的公司加入咨询委员会并参加会议。

通过改进超高温热物理性能测量来优化工业过程——欧盟Hi-TRACE项目简介

图3 Hi-TRACE第二次会议

Hi-TRACE联合体2019年12月在英国伦敦举行会议,讨论项目进展。此外,为了有效地考虑项目内的工业需求,同时在英国国家物理实验室(NPL)成立了一个咨询委员会。

5. 超越现有技术的进步

一些国家计量和指定机构运行固体材料(合金、聚合物、复合涂层等)热物理性能测试设备,以便为行业提供具有相关不确定度的认证值。比热、热导率和光谱发射率的测量最高可达1000℃,有时最高可达1500℃。在之前的项目中,已经开发了一些参考装置,并以2000℃(热扩散率的情况)为计量标准进行了表征。与此同时,设备制造商和学术实验室已经开发并扩展了高达3000℃的新测量方法。该项目将进一步开发这些特性的参考装置,以获得1500℃至3000℃的固体材料参考值,并为工业和学术用户提供可追溯性,以验证其他新方法。

已知很多材料的熔化温度高达几千摄氏度,这些数值要么是由学术机构获得的,要么是由行业本身获得的。然而到目前为止,温度在1500℃以上的参考材料和参考装置都不存在,这意味着这些测量是在不可追溯的情况下进行的。该项目将提出测量高达3000℃的耐火材料熔化温度的不确定度预算方法。

以前已经研究过应用在涡轮叶片上的隔热层的脱粘现象,通过使用光学或红外辐射来量化粘附状态的非接触和无损技术的现有方法还是无法令人满意,并且没有得到验证。该项目将超越现有技术水平,提供经过验证的接触热阻测量设备、专用人工参考制品和数字工具,用于表征从室温到1000℃以上温度下的脱粘状态。

6. 结果

6.1. 在高达3000℃的温度下建立热扩散率测量的可追溯性

通过改进所使用的感应炉(高频发生器的改进)和实施校准温度高达3000℃的新型双色辐射温度计,两个现有的激光闪光法装置已被改进为在非常高的温度下工作。

通过对石墨样品进行热扩散率测量,对其中一种设备的性能进行了测试。在第一步中,使用由改进的感应炉然后由电阻炉加热的相同样品进行比较热扩散率测量,电阻炉用于在中等温度范围内进行测量的参考装置中,因为它比感应炉具有更好的温度均匀性。在这两个炉子的共同工作温度范围(从500℃到800℃)内,获得的结果非常一致(偏差小于1%)。第二步,在感应炉中测量这种材料的热扩散率,最高可达2995℃。

辐射温度计的现场校准方法是通过使用金属-碳低共熔高温固定点(HTFPs)来开发的,该固定点位于炉中样品的位置。钯-碳(1492℃)、铂-碳(1738℃)和铱-碳(2290℃)定点单元的不同几何形状已被设计并用于测试所提出的校准方法。就不确定度而言,与样品具有相同形状和尺寸的单元给出最佳结果。

6.2. 建立温度高达3000℃的比热容测量的可追溯性

基于不同技术解决方案的两种下落法量热仪正在开发中。

在第一种情况下,由两个热电堆组成的热流式量热仪被集成在一个位于感应炉下方的等温块中。为了限制热辐射从炉子进入热电堆,在炉子和量热仪之间安装了一个活门系统。为了提高加热区的温度均匀性,已经对炉中的样品位置进行了优化。通过修改熔炉的冷却回路,增强了基线的稳定性(试样下落前热电堆发出的信号)。

该量热仪的热流校准是通过电气替代来执行的,这是由于坩埚配备有特定的加热器,该加热器安装为4线制电阻,并放置在热电堆中。在每个样品下落后,通过焦耳效应散发的能量与样品下落后在量热仪中释放的能量大致相同,从而对热电堆进行校准。通过电校准对热电堆灵敏度的首次测定显示,相对于消耗的电能,线性度良好。用于测量样品下落前温度的辐射温度计的原位温度校准程序与热扩散率测量中描述的程序相同。第一次比热测量是在钨样品上用这种下落法量热仪进行的,温度高达2000℃。

在第二种情况下,量热仪原型的不同元件(装有热敏电阻的铜块、快门系统、感应炉、高温计等)已经组装好了。落样机构及其控制(电子、软件)正在建设中。此外,还进行了数值模拟,以评估样品在感应炉加热后自由下落过程中散失的热量。

针对光谱发射率已知的样品,提出了基于激光闪光技术的动态比热测量的理论概念。使用沉积在钨样品上的石墨涂层对其进行了实验测试,并建立了初步的不确定度预算。

亚秒脉冲加热装置已被改进,用于测量温度高于1500℃时的比热。首次高温脉冲加热测量已使用该装置在2300℃以下的纯钨样品上进行,这些初步结果与文献中的比热数据吻合良好。

6.3. 建立发射率测量的可追溯性,并改进3000℃以下熔化温度的计量

在先前项目中开发的基于量热法的计量参考装置正在进行改造,以便能够在非常高的温度下对法向光谱发射率进行可追踪的测量。已经研究了适用于样品架的材料,认为候选材料是氮化硼、石墨和钨。由于氮化硼样品架在目前的设计中很难安装,所以只设计了石墨和钨样品架。已经进行了朝向更高温度的加热过程的有限元模拟,目前测试的最高工作温度为1700℃。

基于辐射测量方法的其他三个现有装置的升级正在进行中,这些辐射测量系统将通过实验室间比对与参考系统进行比较。

联盟选择了固体均质材料,用于本项目第二部分组织的三个实验室间热扩散率、比热和发射率测量的比较。所选材料(钼、钨和各向同性石墨IG210)因其熔点高而被选中,可作为激光闪光装置、量热仪和发射率测量装置在极高温度下校准的候选参考材料。三个实验室间比较所需的样品(每种材料约75个样品)已在相同的钼、钨和各向同性石墨块中加工,以根据每个合作伙伴在尺寸和几何形状方面的要求限制潜在的不均匀性影响。在这些同质固体材料上获得的结果将在一个资源库中提供,并可由学术界和工业界的最终用户下载和重复使用。

在这些实验室间的比较之后,合作伙伴将描述“工业”材料(复合材料和金属合金)在超高温下的热物理特性(热扩散率、比热和发射率),这些材料将由参与项目的工业合作伙伴或利益相关者咨询委员会提供。

6.4. 建立高温下(1000℃以上)量化脱粘的方法

激光闪光装置适用于通过测试样品正面和背面的温度测量来测量多层系统中的接触热阻。基于控制体积法的数值模型预测了激光闪光实验中温度场随时间的发展,并得到了验证。用另一种装置(基于热成像测量)对具有特定缺陷的样品进行测量,以找到一种有效的方法来检测机械脱粘。

已经编写了一份报告,介绍了为项目制作相关多层的可行性,并提出了潜在的多层系统。双层和三层系统以及部分脱粘的双层和三层系统的开发和表征正在进行中。潜在的候选多层材料系统的初步测试已经在4个系统上进行:碳化硅-瓷土-莫来石、氧化铝-玻璃陶瓷、氮化硅-烧陶瓷-氮化硅和氧化铝-铝箔-氧化铝。基于这些初步测试,碳化硅-瓷土-莫来石已被推荐用于详细表征。

因此,在室温下对碳化硅-瓷土-莫来石系统的双层和三层样品进行了激光闪光试验,并利用建立的反向传热模型计算了它们的界面热阻值(没有部分脱粘)。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存